Artificial Intelligence for Delta Hedging

Subscribe to newsletter

Financial risk management is the process of identifying, measuring, and managing financial risks. There are many different types of financial risks, including interest rate risk, credit risk, liquidity risk, market risk, and operational risk. Machine learning and artificial intelligence can be used to identify and measure these risks, as well as to develop strategies for managing them.

A concrete application of machine learning and artificial intelligence is hedging market risks which involves taking offsetting positions so that if the market moves in a particular direction, the hedging instruments will move in the opposite direction, thus reducing the risks of the portfolio. A practical example of using reinforcement learning for hedging is discussed in Reference [1].

Similarly, Reference [2] presented a delta hedging strategy using Neural Network,

Subscribe to newsletter https://harbourfrontquant.beehiiv.com/subscribe Newsletter Covering Trading Strategies, Risk Management, Financial Derivatives, Career Perspectives, and More

In this paper, we leverage a set of state-of-the-art deep learning technologies to explore the landscape of neural delta hedging. We construct 4 different neural architectures, RNN, TCN, AttentionNet, and SpanMLP to verify their ability to approximate or even challenge the black – scholes model in calculating delta value. As a result, unlike previous works who have concentrated in building highly complex models which require excessive computing power, we suggest that simpler architectures, for instance RNN, also have the capacity to minimize Profit and Loss(PnL) for option trading. Our results show that Vanilla RNN structure outperforms post-RNN models such as TCN, AttentionNet and SpanMLP in PnL minimizing tasks.

While it is still in its early days, machine learning and artificial intelligence have the potential to manage financial risks for companies in a more efficient and accurate way than the traditional methods. As this technology continues to evolve, we can only expect these capabilities to improve. What do you think about the role of machine learning and artificial intelligence in risk management? Have you seen examples of either of these technologies being used effectively in this area? Let us know in the comments below.

References

[1] JC. Hull, Machine Learning in Business: An Introduction to the World of Data Science, Second Edition, 2020, Independently published

[2]  G. Son, J. Kim, Neural Networks for Delta Hedging, 2021, https://arxiv.org/abs/2112.10084

Further questions

What's your question? Ask it in the discussion forum

Have an answer to the questions below? Post it here or in the forum

LATEST NEWSPope Francis, first Latin American pontiff, dies after stroke and cardiac arrest
Pope Francis, first Latin American pontiff, dies after stroke and cardiac arrest
Stay up-to-date with the latest news - click here
LATEST NEWSPurpose Investments Announces Risk Rating Change for Purpose Global Innovators Fund
Purpose Investments Announces Risk Rating Change for Purpose Global Innovators Fund
Stay up-to-date with the latest news - click here
LATEST NEWSGold Surges to Record as Trump Ramps Up Threats on Fed’s Powell
Gold Surges to Record as Trump Ramps Up Threats on Fed’s Powell

Gold rose to an all-time-high, after concern that President Donald Trump could fire Federal Reserve Chair Jerome Powell triggered a flight from US stocks, bonds and the dollar.

Stay up-to-date with the latest news - click here
LATEST NEWSHarvard University sues to block Trump from slashing billions in research funding
Harvard University sues to block Trump from slashing billions in research funding
Stay up-to-date with the latest news - click here
LATEST NEWSLion Copper & Gold CEO John Banning buys $63,072 in shares
Lion Copper & Gold CEO John Banning buys $63,072 in shares
Stay up-to-date with the latest news - click here

Leave a Reply